Data

 

- Analog Data(아날로그 정보) : 연속적인(continuous) 정보 ex) 사람의 음성

 

- Digital Data(디지털 정보) : 불연속적인(discrete) 정보 ex) 비트(0, 1)

 

- 데이터는 링크로 전송되기 위해 전자기 신호로 변형된다.

 

 


Signal

 

- Analog Signal(아날로그 신호) : 정해진 범위(time) 내의 무한히(infinitely) 많은 값이 신호값을 가진다.

 

- Digital Signal(디지털 신호) : 특정 범위에서만 신호값이 나타난다. , 정의되는 신호값들이 제한적이다.


- Periodic Signal(주기적 신호)

  • 측정 가능한 시간 프레임(주기) 내에 하나의 패턴이 나타나며, 동일한 주기 내에 특정 패턴이 반복적으로 나타난다.
  • Cycle : 하나의 패턴이 완성되기까지 걸린 시간(주기)

 

- Nonperiodic Signal(비주기적 신호)

  • 주기 동안 패턴이나 Cycle이 반복적이지 않고 항상 변한다.

 

- 데이터 통신에서 우리는 공통적으로 주기적 아날로그 신호(periodic analog signal)와 비주기적 디지털 신호(Nnonperiodic digital signal)를 이용한다.

 

 


Periodic Analog Signal (주기적 아날로그 신호)

 

- 대부분 근본적인 형태는 사인 모양의 파형(Sine Wave)이다.

 

- 최대 진폭(Peak amplitude) : 가장 높은 강도(전압)의 절댓값

 

- 주파수(Frequency)

  • 1초 안에 반복되는 패턴(Cycle)
  • 단위 : Hz
  • 주기와 반비례

[빨간색이 최대 진폭, 파란색이 주기]


위상(Phase) : 0초에 대해 상대적인 파형(위치)의 변화이며각도로 나타난다.

 

 (A : 진폭, f : 주파수, t : 시간, : 위상)

 

- 파장(Wavelength)

  • 하나의 신호가 한 주기동안 이동할 수 있는 거리
  • 파장 = 전파 속도(Propagation speed) * 주기
  • 주파수와 매체에 따라 다르다.
  • 종종 광섬유 내부에 빛의 전송을 표현하기위해 이용되어 진다.

 


 

Domain

 

- Time Domain : 시간(x)을 기준으로 진폭(y)을 나타낸 것이다.

 

- Frequency Domain : 주파수(x)을 기준으로 진폭(y)을 나타낸 것으로, 최대 진폭과 주파수에 대한 정보만 있다.

 

[좌 Time Domain, 우 Frequency Domain]


 


 

Composite Signal(복합 신호)

 

- 하나의 사인 파형이 많이 합쳐져서 만들어진 모양이다. , 아날로그 신호이다.

 

- 푸리에 해석(Fourier Analysis)에 의하면, 복합 신호는 다른 주파수, 위상, 진폭을 가진 사인 파형들이 합쳐진 것이다.

 

S(t) = S(t1) + S(t2) + S(t3) + .... ( f는 기본주파수이다.)

 

- Periodic Composite Signal(주기적 복합 신호) : 불연속적이고 값(개수)이 제한적인 주파수를 가진 일련의 사인파형들이 모인 신호이다.

 

  • Time Domain에서는 각 사인 파형들이 연속적으로 나타남
  • Frequency Domain에서는 불연속적인 주파수 모형

 

- Nonperiodic Composite Signal(비주기적 복합 신호) : 연속적이고 무한한 값의 주파수를 가진 사인 파형들이 모인 신호이다.

 

  • Time Domain에서는 무한한 시간값에 대해 신호값을 모두 가진 사인 파형들이 결합된 형태로 나타난다.
  • Frequency Domain에서는 연속적인 주파수값을 보여준다.

- Frequency Spectrum(주파수 스펙트럼) : 모든 신호의 구성요소들을 포함하고 주파수 도메인으로 표현되는 하나의 신호를 나타낸다. 넓을수록 다양한 신호를 포함한다.

 

 


Bandwidth(대역폭)

 

- 복합 신호 내에 가장 높은 주파수와 가장 낮은 주파수간의 차이


- 주파수 스펙트럼의 너비

[해당 이미지에서 Bandwidth = 4000Hz 이다.]

 



Digital Signal

 

[파란선이 디지털 신호, 검은 색이 신호레벨]

 

- 왼쪽이 4(22)개의 Signal Level을 가지고 있고, 오른쪽은 8(23)개의 Signal Level을 가지고 있다.

 

- 신호 레벨에 log2를 취하면 표현할 수 있는 값의 종류가 나타난다. 즉 몇 비트로 나타내는가를 알 수 있다.

 

- Bit rate(or Data rate) : 1초당 비트의 수(bits per second)로 단위는 bps이다.

 

- Bit Length = 전파 속도(Propagation speed) * 1비트당 걸린 시간(bit duration)

전송 매체에서 1비트당 이동한 거리

 

- 디지털 신호는 무한한 대역폭을 가진 복합적 아날로그 신호이다.

 

- 대역폭(bandwidth)와 자료 전송율(data rate)이 비례한다. 이유는 주파수 범위가 넓을수록 초당 더 많은 데이터를 담을 수 있기 때문이다.



 Time Domain

Frequency Domain

Periodic

odd harmony(discrete) 

Nonperiodic 

continuous 


 

 


디지털 신호의 전송

 

- 기저대역 전송 (Baseband Transmission)

  • Baseband : 변조되기 이전에 또는 변조되지 않는 원래 정보 신호들이 있는 저주파 영역
  • Low-pass Channel(저대역 통과채널) : 주파수가 0에서부터 시작하는 대역폭을 가진 채널
  • 자료 전송율(Bit rate)과 대역폭이 서로 비례한다. 고속링크를 원한다면 더 넓은 대역폭이 요구된다.
  • 디지털 신호를 아날로그 신호로 변조하지 않고, 저대역 통과채널만 전용으로 사용하는 매체(dedicated medium)를 이용하여 전송하는 방법
  • , 하나의 링크(매체)에 통신가능한 한 개의 채널을 공급한다. 따라서 복수의 단말기로부터 동시에 데이터 전송이 불가능하다.
  • 넓은 대역폭을 가진 저대역 통과채널을 사용하기 때문에 디지털 신호의 모양을 유지할 수 있다. , 디지털 신호가 저대역 통과채널을 이용할 때만 제대로 간다.


- 광대역 전송 (Broadband Transmission)

  • Bandpass Channel(특정대역 통과채널) : 주파수가 0에서 시작하지 않는 대역폭을 가진 채널
  • 이 채널을 이용하려면, 다른 주파수 대역으로 이동시키기 위해 전송 전에 디지털 신호를 무조건 아날로그 신호로 변조해야한다.
  • 디지털 신호를 아날로그 신호로 변조하여 전송하는 방식으로, 하나의 단일 링크에 주파수를 여러 개의 대역으로 분할하여 채널을 할당하므로 사용하고자 하는 대역으로 각각 독립된 신호를 전송하는 것이 가능하다.
  • 각각의 채널은 서로 다른 주파수에서 이뤄지기 때문에 다른 네트워크 통신을 방해하지 않는다.


 

 

OSI Model

 

- OSI Model (OSI 7계층 모형) : Open Systems Interconnection Reference Model의 약자로서, 국제 표준화기구(ISO)에서 개발한 모형이다. 이 모형은 컴퓨터 네트워크의 프로토콜을 기능별로 나누어 각 계층으로 설명한다. 각각의 계층은 하위 계층의 서비스(기능)만을 이용할 수 있고, 반대로 상위 계층에 서비스를 제공한다. 주로 하위 계층은 하드웨어 측면, 상위 계층은 소프트웨어 측면을 구현한다.



* 각 계층마다 데이터 단위(Data Unit)에 관한 용어가 다르다. 위 사진의 계층 왼쪽에 해당 데이터 단위가 적혀 있다.


네트워크를 계층 구조로 나눈 이유

    1. 데이터의 흐름이 한눈에 보인다.
    2. 하나의 문제를 7개의 작은 문제로 나누기 때문에 문제 해결이 쉽다. 
    3. 각 계층마다 사용하는 장비가 다른데, 표준화를 통해 여러 회사의 네트워크 장비를 사용하더라도 이상 없이 작동할 수 있게 된다.


- 7계층 : 응용 계층(Application Layer)

    => 응용 프로세스와 직접 연관되어 일반적인 응용 서비스를 수행한다. 예시로 네트워크 소프트웨어의 UI(User Interface), 사용자의 입출력(Input/Ouput, IO)부분이 있다.

 

- 6계층 : 표현 계층(Presentation Layer)

    => 코드 간의 번역을 담당하여 사용자 시스템에서 데이터의 형식상 차이를 다루는 계층으로, 인코딩이나 암호화 등의 기능이 이 계층에서 이루어진다.


- 5계층 : 세션 계층(Session Layer)

    => 종단간(End-to-End)의 응용 프로세스가 통신을 관리하는 방법을 제공하는 계층으로, 동시 방식(duplex), 반이중 방식(half-duplex), 전이중 방식(full-duplex)의 통신을 가지고 체크 포인팅 및 종료, 다시 시작 등의 과정을 수행한다. , 통신하는 사용자들을 동기화하고 오류복구 명령들을 일괄적으로 다룬다.

 

- 4계층 : 전송 계층(Transport Layer)

    => 송수신측(End-to-End) 간의 신뢰성 있는 데이터 전송(Reliable Data Transfer, RDT)을 가능하게 해주는 계층으로, 상위 계층들이 데이터를 전달하는데 효율성을 신경쓰지 않게 해준다. 예시로 TCP(Transfer Control Protocol)가 있다.

 

- 3계층 : 네트워크 계층(Network Layer)

    => 여러 개의 노드(사용자)를 거칠 때마다 경로를 안내해주는 역할을 하는 계층으로, 길이가 다양한 데이터들을 각 네트워크를 통해 전달하고, 그 과정에서 전송 계층(상위 계층)에 서비스를 위한 기능적, 절차적 수단을 제공한다.

 

- 2계층 : 데이터 링크 계층(Data Link Layer)

    => 점대점(Point-to-Point) 간 신뢰성 있는 전송을 위한 기술들로 이루어져 있으며, 네트워크 계층으로 데이터를 전달하고, 물리 계층으로부터 발생할 수 있는 오류를 찾아내고, 수정하기 위한 기능적이고 절차적인 수단을 제공한다.

 

- 1계층 : 물리 계층(Physical Layer)

    => 네트워크 통신 중 하드웨어의 전송 기술로 이루어져 있으며, 다양한 특징의 하드웨어적인 기술이 드러나기 때문에 가장 복잡한 계층으로 간주된다.

 



네트워크 장비

 

- Hub(허브) : 한 케이블의 입력 신호를 연결된 다른 신호로 그대로 전달하는 리피터(신호 재생기)기능을 한다. , 단순 전송 장비

 

- Switch(스위치) : 2계층(데이터 링크 계층) 장비(네트워크 장비), 스위치에 꼽힌 케이블을 통해 목적지 포트를 향해 데이터들이 전송된다. 허브(Hub)도 유사한 역할을 하지만 가장 큰 차이는 허브의 경우 컴퓨터 간의 연결을 통해 데이터가 전달되기 때문에 데이터가 많아질 경우 속도가 느려진다.

 



- Switching hub(스위칭 허브) : 허브의 기능과 스위치의 기능을 접목한 장비로 단순한 전달 기능을 넘어 목적지 주소에 해당하는 통신 링크로 데이터를 전송한다.

 

- Router(라우터) : 3계층(네트워크 계층) 장비로, 서로 다른 네트워크 간의 정보를 주고받기 위해 사용하는 네트워크 통신 장치

 

 * 과거에 스위치는 링크에 있는 데이터의 헤드를 보고 해당 포트번호로 데이터를 보내는 기능(소프트웨어적인 기술)을 하고, 라우터는 더 넓은 범위(IP를 보고 포워딩)까지 다룬다는 차이를 가지고 있었다. 즉, 스위치와 라우터의 경계가 현재보다 뚜렷했었다. 그러나 현재는 스위치가 발전되어 그 경계가 모호해졌고 기존에 MAC(자료접근제어)을 보고 포워딩하던 스위치는 하드웨어적으로 IP를 분석해서 경로를 설정하고 포워딩할 수 있는 기술에 이르게 되었다. (IP는 복잡하기 때문에 하드웨어로 구현하는 것이 어렵다.)

 



용어 정리

 

- Module (모듈) : 전체나 조직을 이루는 구성 요소 또는 구성 단위

 

- Modularity (모듈성) : 컴퓨터 시스템에서 하드웨어나 소프트웨어의 각 구성 요소의 일부를 변경하고 증설할 때 그 변경이 전체에 영향을 미치지 않도록 해당 부분만 수정할 수 있는 성질. , 통신에 있어서 각각의 독립된 계층(Layer)들이 여러 입출력을 가진 구성 요소(모듈)로서 정의되어 진다. 따라서 각 계층들은 모듈성을 가진다.

 

- Encapsulation(캡슐화) : 위 계층에서 하위 계층으로 갈수록 데이터의 헤더에 목적지 IP주소, 포트번호 등을 추가하여 해당 데이터를 외부에서 볼 수 없도록 하는 것이다. 물리 계층에서 통신링크로 데이터가 보내질 때 데이터(정보)를 보호할 수 있다.

 

- Decapsulation : 캡슐화의 반대어로, 하위 계층에서 상위 계층으로 데이터가 수신자에게 도착하기 까지 오버 헤드된 데이터의 헤드를 하나씩 벗겨내는 과정을 의미한다.

 

[ 검은색 선은 전체적인 데이터의 이동 경로이지만 세부적으로 보자면,

왼쪽 아래방향 검은색 선이 Encapsulation 과정이고 오른쪽 위 방향 검은색 선이 Decapsulation 과정이다. ]




▶ Peer-to-Peer Processes




- 같은 계층에서 정보를 주고 받는 레이어(Peer)


- 또래 계층 간의 데이터 전송에서는 오버 헤드가 해당 계층까지만 이루어지지만 전체 계층을 통과할 경우 캡슐화로 오버 헤드가 커지게 된다. 즉, 전달되는 데이터의 오버 헤드된 부분(AH, PH, SH 등)이 캡슐화의 결과이다.




▶ Communication Summary


 

 

 - Client A 가 보낸 데이터는 응용 계층(7계층) -> 물리 계층(1계층)까지 캡슐화를 거쳐 통신 링크로 전송되고, 링크 중간단계의 스위치와 라우터를 통해 목적지(Client B 또는 C)로 안내되어 진다. 링크로 받은 데이터는 수신측에서 캡슐화가 해제되면서 오버헤드가 벗겨지고 데이터만 수신자가 받게 된다.




▶ Physical Layer (물리 계층)


- 2계층의 데이터 단위인 프레임(Frame)을 전달받고 해당 프레임 안에 각 비트들을 신호로 바꾸어 통신 링크로 옮긴다.


- 각 비트(정보)들을 신호로 바꾸는 과정은 네 가지가 있다.

  • Digital to Digital : 디지털 정보를 디지털 신호로 바꾸는 방법
  • Analog to Digital : 아날로그 정보를 디지털 신호로 바꾸는 방법
  • Digital to Analog : 디지털 정보를 아날로그 신호로 바꾸는 방법
  • Analog to Analog : 아날로그 정보를 아날로그 신호로 바꾸는 방법
- 바꾸어진 신호들은 다중화(Multiplexing) 방식을 거쳐서 복합신호가 되어 링크를 타고 수신측으로 전송된다.


- 두 기기가 전송 매체(통신 링크)에 의해 연결되어 진다.




▶ Data Link Layer (데이터 링크 계층)


- 점대점(Point-to-Point) 간 신뢰성 있는 전송을 위한 기술들로 이루어져 있다.


- 수신측일 경우 네트워크 계층으로 데이터를 전달하고, 송신측일 경우 3계층의 데이터 단위인 데이터그램(Datagram)을 전달받은 뒤, 프레임으로 캡슐화한다. 또래 계층간의 통신이면 링크로 옮기거나, 물리 계층(1계층)으로 프레임을 전달한다.


- 데이터그램에서 프레임으로 캡슐화하는 과정에서는 프레임에 MAC(자료접근제어)이라는 물리적주소를 부여한다.


- Medium Address Control(이하 MAC) : 매체 접근 제어 혹은 자료 접근 제어라고 불리며, 네트워크(LAN이나 WAN)에서 호스트의 물리적주소를 정의하며, 네트워크의 장비를 식별하는 역할을 한다.


- 물리 계층으로부터 발생할 수 있는 오류를 찾아내고수정하기 위한 기능적이고 절차적인 수단을 제공한다.


- Flow Control(흐름 제어) : 송수신 장비의 속도를 조절한다. 보내는 속도가 빠르나 받는 속도가 느릴 경우 수신 장비에서 놓치는 데이터가 발생하기 때문이다.


- Error Control(오류 검출 및 정정) : 신뢰도를 제공한다.


- Access Control(접근 제어) : 공유링크의 사용순서를 결정한다.




▶ Network Layer(네트워크 계층)


- 호스트 간의 통신을 담당하고, 해당 패킷을 라우팅하는 역할을 한다. 라우팅 시 목적지안내를 위해 각 라우터가 목적지 IP 주소에 대한 다음 노드(라우터나 목적지)로 패킷을 보낸다. 이 때 라우팅 알고리즘이 사용된다.


- 주로 라우터가 이 계층에서 동작하지만, 기술의 발전으로 L3용 스위치도 있다. 데이터를 다른 네트워크로 전달하여 네트워크끼리 연결함으로써 인터넷을 가능하게 만드는 계층이다.


- 캡슐화 과정에서 IP주소를 부여한다.


- Internet Protocol(이하 IP

  • 패킷의 형식과 주소들의 구조 및 형식을 정의한다.
  • IP 주소는 흔히 로컬 주소(Local Address)라고도 하며, 통신 장치의 인터페이스 식별자 역할을 한다.
  • 쉽게 말해서, 인터넷에 기기가 연결되었음을 정의한다.

- Internet Control Message Protocol(이하 ICMP) : 데이터그램이 문제가 발생했을 때 해당 통보를 송신자에게 보내기 위해 호스트와 게이트웨이에서 사용되는 메커니즘이다. 즉, 전송 에러를 보고한다.


- Internet Group Management Protocol(이하 IGMP) : 받는 사람이 개인이 아닌 그룹일 때, 어떤 그룹에 몇 개의 메시지가 속해있는지 확인하여 메시지(데이터)를 동시에 전송할 수 있게 한다.


- Dynamic Host Configuration Protocol(이하 DHCP) : IP주소를 동적으로 할당하기 위한 프로토콜


- Address Resolution Protocol(이하 ARP) : IP주소가 주어지면 MAC주소를 확인하여 추가하기 위한 프로토콜




▶ Transport Layer(전송 계층)


- 응용 계층에 서비스를 주는 역할을 한다.


- Transmission Control Protocol(이하 TCP)

  • 연결 지향 프로토콜로서 데이터 전송 전에 두 호스트간의 전송 계층 사이에 논리적인 연결을 설정한다.
  • 스트림 지향적이고 신뢰성 있는 통신규약이다.
  • Flow Control(흐름 제어) : 송신 속도를 수신 속도에 맞추어 목적지 호스트에서 데이터 손실이 발생하는 것을 막는다.
  • Error Control(오류 검출 및 정정) : 손실된 데이터들을 재전송하고 오류 없이 목적지로 패킷을 전송하는 역할을 한다.
  • Congestion Control(혼잡 제어) : 데이터가 너무 많이 전송되어 세그먼트의 손실이 발생하는 것을 막는 역할을 한다.
- User Datagram Protocol(이하 UDP)
  • 비연결 지향 프로토콜로서 논리적 연결을 설정하지 않고 사용자의 데이터를 전송한다.
  • 연결이 없으므로 상태정보를 알기 어렵고 데이터가 컨트롤되지 않는다.
  • 즉, 흐름 제어, 오류 제어, 혼잡 제어 기능이 없다.
  • 단순하고 작은 오버헤드를 가진다.

- TCP가 편지라면, UDP는 소포와 유사하다.


- Stream Control Transmission Protocol(이하 SCTP)

  • TCP와 UDP를 결합한 형태로 멀티미디어 통신에 사용되는 통신규약이다.
  • 멀티스트림(다수의 데이터 요소), 연결 지향, 신뢰성있는 데이터 전송, 전이중성 서비스를 제공한다.
- 포트 번호(Port Number) : 16비트로 이루어져 있으며, 동시에 운영되고 있는 여러 프로세스 사이에서 하나의 로컬 주소를 식별할 수 있는 식별자 역할을 한다. 흔히 80번은 웹페이지 전송 포트 번호(HTTP)이고, 20번, 21번은 파일전송프로토콜(FTP)의 데이터 및 제어포트이다.
  • 0~1023번 : Well-known port, 잘 알려진 포트번호들이다.
  • 1024~49151번 : Registered port, 등록된 포트번호들이다.
  • 49152~65535번 : Dynamic port, 동적 포트번호들이다.



▶ Multiplexing & Demultiplexing


- 출발지(Source)에서의 Multiplexing : 상위 계층으로부터 받은 데이터를 해당 계층의  프로토콜이 데이터의 헤더에 정보를 추가하여 캡슐화하는 것을 의미한다.


- 도착지(Destination)에서의 Demultiplexing : 해당 계층의 각 프로토콜이 하위 계층으로부터 받은 데이터의 캡슐화를 해제하고 다음 상위 계층으로 데이터를 전송하는 것을 의미한다.


- 회선 교환 방식에서 사용하는 다중화와는 약간 다른 의미를 가진다.



Data : 비트(0, 1)로 구성된 정보

 

* Data Communication : 전송 매체(transmission medium)를 통해 두 기기간의 이루어지는 데이터 교환

 


1. 근본적인 특성

  • Delivery : 올바르게 목적지로 전달하는 것
  • Accuracy : 오류나 손실 없이 정확하게 데이터를 전달하는 것
  • Timeliness : 시간적으로 중요한 데이터를 전달하는 것, 데이터 생성 즉시 지연(delay)없이 데이터를 전달하는 것, 실시간 전송  ex) 멀티미디어(음성/영) 
  • Jitter : 패킷(데이터 단위) 전송 중의 변화 ex) 음성이나 영상 데이터 전송 중 끊김현상

 

2. 시스템 요소

  • Message : 전송되어지는 정보(데이터)
  • Sender(송신자) : 데이터 메시지를 보내는 기기
  • Receiver(수신자) : 데이터 메시지를 받는 기기
  • Transmission Medium(전송 매체) : 메시지가 이동하는 물리적 경로(통신 링크)
  • Protocol : 데이터 통신을 하기 위한 통신 규약(통신하는 기기간의 약속)

3. 데이터 흐름의 방향
  • Simplex : 단일방향의 통신  ex) 키보드, 모니터
  • Half-duplex : 반이중방식 통신으로 전송과 받기가 가능하나 두 기기가 동시에 주고 받을 수는 없다.  ex) 무전기
  • Full-duplex : 전이중방식 통신으로 전송과 받기가 동시에 가능하다.  ex) 전화


4. Network - 네트워크

  • 통신 링크에 의해 연결되어진 통신 관련 장비들의 무리
  • Device : host, end system, end host, connecting device such as router
  • host(호스트) : 네트워크에 연결된 컴퓨터

5. 네트워크의 기준

 - Performance(성능)
  • 전달시간, 응답시간 내에 측정되어진다.
  • 처리율(throughput), 지연(delay), 받은 데이터간의 시간 간격(jitter), 손실과 관련이 있다.
  • 유저의 수, 전송 매체의 종류, 하드웨어, 소프트웨어에 영향을 받는다.  ex) 사용자 수가 많을 수록 성능이 저하된다.

 - Reliability(신뢰성)
  • 실패의 빈도수, 실패 이후 네트워크의 복구시간, 재난에 대한 네트워크의 견고함

 - Security(보안)
  • 비인증된 접근으로부터 데이터의 보호
  • 데이터의 무결성
  • 보안 정책 및 절차의 구현

6. 물리적 구조

 - 연결 유형
  • Point-to-Point(점대점) : 두 기기간의 전용링크를 제공하는 구조
  • Multipoint(다중점) : 둘 이상의 기기들이 단일 링크를 공유하는 구조로 동시에 링크를 이용한다. 즉, 공동소유자 여러 명이 일정 기간 동안 돌아가면서 이용한다.

 - 물리적 형태(Topology)



  • Mesh
  1. 모든 기기가 점대점 구조로 연결되어 전용 링크를 사용한다.
  2. 두 기기간의 데이터 로드를 보장한다.
  3. 하나의 링크가 고장나도 전체 시스템은 중단하지 않는다.
  4. 보안성과 프라이버시가 보장된다.
  5. 결함 확인과 결함 분리가 쉽다.
  6. 케이블 수와 입출력 포트의 수가 (n(n-1))/2 만큼 요구된다.  ex) 5개의 사용자가 있다면 10개의 링크가 요구된다.



  • Star

  1. 전용링크가 중앙 컨트롤러(Hub)에 배치되며, 기기와 컨트롤러가 점대점 구조로 연결된다. - 중앙방식(Centralized)

  2. Mesh 보다 비용이 저렴하다.

  3. 하나의 링크와 하나의 입출력을 설치하고 변경하기가 쉽다. (단순한 구조이므로 링크 1개만 연결하면 된다.)

  4. 결함 확인과 결함 분리가 쉬우므로 튼튼하다.

  5. 다른 Topology보다 많은 Cabling

  6. 단 하나의 고장이 전체 시스템에 영향을 미친다. (중앙 장비-hub-가 고장난 경우)



  • Tree

Star 구조를 계층적으로 확장한 형태이다.



  • Bus
  1. 다중점 구조로 연결되며 하나의 긴 케이블이 모든 기기를 연결하는 척추 역할을 한다.
  2. 설치가 쉽다.
  3. 하나의 버스 구조가 지원할 수 있는 Tap(기기를 케이블에 연결하는 것)의 수와 길이가 제한된다.
  4. 재연결과 분리가 어렵다.
  5. 링크 공유의 문제로 각 기기가 동시에 데이터를 전송하면 신호가 충돌하는데 MAC(자료접근제어)에 의해 전송 순서가 결정된다.



  • Ring
  1. 각 기기는 점대점 구조로 연결되어 전용 링크를 사용한다.
  2. 설치와 변경이 쉽다.
  3. 기기와 링크간의 신호재생기(Repeater)가 존재한다.
  4. 결함 분리가 단순하다
  5. 단방향 연결, 모든 기기의 수와 최대 Ring의 길이가 제한된다.
  6. 하나가 고장나면 전체 네트워크를 이용할 수 없다. 그래서 해결책으로 이중링크를 사용한다. 
  7. 이중 링크(A Dual Ring) 구조는 데이터의 전송방향은 서로 반대인 링크를 가지는 구조로 두 개 모두 활성화되거나 하나는 백업용으로 사용되기도 한다. 


 7. 네트워크 유형


 - 규모에 따른 분류 (아래로 갈수록 범위가 커진다.)

  • Body Area Network(BAN) : 무선통신방식으로 이용된다.
  • Personal Area Network(PAN) : 블루투스
  • Local Area Network(LAN) : 근거리 통신망
  • Metropolitan Area Network(MAN)
  • Wide Area Network(WAN) : 광역 통신망
  • Internet : 각 네트워크를 연결한 가장 큰 네트워크


 - Local Area Network (LAN)

  • 수 킬로미터까지 제한된 크기를 가진다. (근거리 통신망)
  • PC나 단말기 사이에 네트워크 자원이 공유되어진다.
  • Star, Bus, Ring 구조가 해당된다.

 - Wide Area Network (WAN)
  • 대륙끼리 통신이 가능할 정도로 넓은 범위의 데이터 전송이 가능하다. (광역 통신망)
  • 대게 통신사에 의해 운영되고 통신사를 사용하는 조직에 의해 공유되어진다.
  • 점대점 구조의 WAN과 라우터를 가지고 Switched 구조의 WAN이 있다.
  • Internetwork (or Internet) : 내부적으로 연결된 네트워크들의 집합체이며, Switched 구조에서 최소 두 개의 링크를 하나의 스위치가 연결(LAN)하고 있고 해당 스위치는 라우터와 함께 점대점 구조로 연결(WAN)되어 있다.

 - Switching
  • 네트워크 통신에서는 호스트와 호스트사이에 데이터를 주고 받을 때, 패킷 교환 방식(Packet-Switching)과 회선 교환 방식(Circuit-Switching)이 있다.
  • Packet : 네트워크 계층(Network Layer)에서의 데이터의 형식화된(약속된) 단위
▶ Packet-Switching : 데이터를 패킷단위로 나누어 전달하는 방식


다음 링크로 전송되기 전에 큐에 패킷을 저장한 뒤 전송하는 방식인 Store and Forward을 이용한다.
패킷의 헤더에는 출발지(Source)와 목적지(Destination)의 정보가 있다. 이 정보를 통해 라우팅 알고리즘을 이용하여 경로를 설정하고 중간의 라우터(router)가 표지판역할을 하여 최종목적지까지 안내한다. 패킷의 헤더에는 라우터를 지날 때마다 목적지IP주소가 쌓이게되므로 오버헤드가 커지게 된다. 라우터마다 큐(Queue)가 존재하는데 여기서 다음 라우터로 이동되기 전에 패킷은 대기한다. 그러나 큐는 패킷을 수용할 수 있는 범위가 정해져 있기 때문에 패킷이 쌓이다 큐의 범위를 벗어날 경우 해당 패킷은 손실(Loss)된다.
주로 대용량 전송(Bursty Traffic)일 때 이용하며, 데이터가 한꺼번에 전송되므로 데이터가 활동하는 시간이 짧다고 표현한다. 이러한 패킷 교환 방식은 컴퓨터 통신에서 쓰이는 방식이다.

▶ Circuit-Switching : 하나의 전용 회선을 할당받아 데이터를 주고받는 방식

<보라색 선이 전용 회선이다. >

전용 회선이 할당되려면 통신을 위해  미리 연결(set up)되야한다. 셋업 절차는 수신측에서 송신측까지의 경로에 맞는 대역폭(Band width)을 미리 할당받는 것이다. 그렇게 연결된 회선은 독점되어 사용되므로 다른 데이터가 끼어들 수 없게 된다. 따라서 속도와 성능이 일정하다. 주로 실시간이 중요한 통신(전화)에 사용된다. 회선을 분할하는 방식에는 주파수 분할 다중화 방식(FDM)과 시 분할 다중화 방식(TDM)이 있다.

  •  차이점
* 패킷 교환 방식은 네트워크의 상황에 따라 패킷의 순서가 어긋날 수 있기 때문에 수신측에서 재조합할 필요가 있다. 그러나 회선 교환 방식은 정해진 경로를 따라 데이터가 전송되므로 순서가 어긋날 일이 없다.

* 패킷 교환 방식은 하나의 라우터가 고장나도 전송을 우회할 수 있기 때문에 에러에 강하다. 그러나 회선 교환 방식의 경우 둘 간의 사이에 오류가 생길 경우 데이터 전송이 실패하게 된다.

* 패킷 교환 방식은 라우터에 패킷을 저장해놓는 시간과 전파지연의 시간이 소비되어 전체 전송 시간이 지연된다. 그러나 회선 교환 방식은 미리 연결하는 시간을 제외하고 전파지연의 시간만 소비되므로 보다 빠른 전송속도를 가지게 된다.

* 회선 교환 방식은 패킷 교환 방식에 비해 같은 네트워크 용량에 비해 사용자가 제한된다.
ex) 1Mbps 짜리 링크에 각각의 사용자가 100kbps로 데이터를 전송한다면 패킷교환방식의 경우 10명이상의 유저가 동시에 링크를 사용할 확률이 낮기 때문에 더 많은 이용자도 수용가능할 것이다. 그러나 회선 교환 방식의 경우 각각의 사용자에게 전용회선이 할당되기때문에 어떤 사용자가 데이터를 보내지 않더라도 다른 사용자가 이용할 수 없게 된다. 따라서 딱 10명의 이용자만 수용할 수 있다.


[사진 출처 : http://www.mbaskool.com/business-concepts/it-and-systems/14504-packet-switching.html

http://www.webclasses.net/Courses/demos/MediaLight/Example1/The_OSI_Model/Content16184.htm ]


+ Recent posts