용어 설명

 

- Packet(패킷) : 네트워크 계층에서 사용하는 데이터의 형식화된 단위

 

- Host(호스트) : 인터넷에 연결된 컴퓨터

 

- Queue() : FIFO(First-In-First-Out) 방식의 데이터 저장용 버퍼 (출구와 입구가 다름)

 

- Router(라우터) : 서로 다른 네트워크 간의 정보를 주고받기 위해 사용하는 네트워크 통신 장치

 


- Network(통신망) : 통신 시스템들을 통신 회선으로 연결하여 데이터(정보)를 주고받게 하는 시스템

 

 



Packet-Switching (패킷 교환 방식)

 


- Store-and-Forward 방식 : 다음 링크로 전송되기 전에 라우터의 큐(저장용 버퍼)에 패킷을 쌓아놓고 한 번에 전송(Forwarding)하는 방식.

 

- , 큐는 패킷을 수용할 수 있는 범위가 정해져 있기 때문에 패킷의 양이 큐의 범위를 넘어설 경우 해당 패킷은 손실(Loss)되며, 이를 오버플로우(Overflow)가 발생했다고 한다.

 

- 패킷의 헤더에는 출발지(Source)와 목적지(Destination)의 정보(포트 번호, IP주소)가 있어 이 정보들을 통해 라우팅 알고리즘을 이용하여 경로를 설정한다.

 

- 라우팅 알고리즘(Routing Algorithms) : 라우팅 프로토콜이 포함하고 있는 알고리즘으로, routing table에는 패킷의 헤더로부터 읽어낸 목적지 IP주소가 있다. 이 정보를 기반으로 라우터가 패킷을 어떤 목적지로 보낼지 결정한다. , 중간의 라우터(router)들이 표지판 역할을 하며 최종목적지까지 패킷들을 안내한다.

 

- 이 때, 패킷의 헤더에는 라우터를 지날 때마다 목적지 IP주소가 쌓이게 되므로 오버헤드가 점차 커지게 된다.

 

- 전송지연(Transmission-Delay) : L-bit 길이의 패킷을 속도가 R bps인 링크로 보낼 때, 큐에서 링크로 전달되는 시간은 L/R 초이다.

 

- 큐잉 지연(Queueing-Delay) : 라우터마다 큐가 각각 존재하기 때문에 다음 라우터로 이동되기 전에 패킷은 대기하게 된다. , 패킷이 큐에 머무는 시간이다.

  • 링크의 전송 속도(bps) < 큐에 패킷이 도착하는 속도 => 오버플로우 발생
  • 전송 지연 시간 > 큐잉 지연 시간 => 오버플로우 발생

 

- 네트워크 상황에 따라 지나친 혼전 가능성이 있으며, 이를 위한 해결책으로 TCP(전송 제어 프로토콜)가 있다.

 

- source에서 router, router에서 router, router에서 destination , 어떤 노드에서 다음 노드까지를 1hop이라고 표현한다.

 

- 이 방식은 주로 대용량 전송(Bursty Traffic)일 때 이용하며, 데이터가 한꺼번에 전송되므로 데이터가 활동하는 시간이 짧다고도 표현한다. 이러한 패킷 교환 방식은 컴퓨터 통신에서 쓰이는 방식이다.

 

 

Circuit-Switching (회선 교환 방식)

 

[ 보라색 선이 전용 회선이다. ]


- 하나의 전용 회선을 할당받아 데이터를 주고받는 방식

 

- 패킷마다 각각의 전용 회선을 할당해야 하므로 통신을 위해 미리 연결(Set-up)절차를 거쳐야 한다. 셋업 절차는 송신측에서 수신측까지의 경로에 맞는 대역폭(Bandwidth)을 미리 할당받는 과정이다.

 

- 전용 회선은 패킷이 전송되지 않더라도 다른 패킷(데이터)이 끼어들 수 없으므로 속도와 성능이 항상 일정하다.

 

- 주로 실시간이 중요한 전화망에 사용된다.

 

- 회선을 할당하는 방식에는 주파수 분할 다중화(FDM)과 시 분할 다중화(TDM) 방식이 있다.

 

 

Packet-Switching VS Circuit-Switching

 

- 패킷 교환 방식은 네트워크의 상황에 따라 대기시간이 다르므로 패킷의 순서가 보장되지 않는다. 그러나 회선 교환 방식은 정해진 경로를 따라 일정한 속도를 가지기 때문에 데이터의 전송 순서가 어긋나지 않는다.

 

- 패킷 교환 방식은 하나의 라우터가 잘못되어도 전송을 우회할 수 있기 때문에 오류에 강하다. 그러나 회선 교환 방식은 둘 사이에 오류가 생길 경우 데이터 전송이 실패하게 된다.

 

- 패킷 교환 방식은 라우터에 저장해놓는 시간(큐잉 지연)과 전파지연의 시간이 소비되어 전체 전송 시간이 지연된다. 그러나 회선 교환 방식은 미리 연결하는 시간을 제외하고 전파지연의 시간만 소비되므로 전체적으로 빠른 전송속도를 가지게 된다.

 

- 회선 교환 방식은 패킷 교환 방식에 비해 같은 네트워크 용량이라도 이용자 수가 제한되어 있다. 이는 전용 회선을 할당하기 때문이다.

 

1Mbps 짜리 링크에 각각의 사용자가 100kbps로 데이터를 전송한다면 패킷 교환 방식의 경우 10명 이상의 유저가 동시에 링크를 사용할 확률이 낮기 때문에 더 많은 이용자가 링크를 공유할 수 있다. 그러나 회선 교환 방식의 경우 각각의 사용자에게 전용 회선이 할당되기 때문에 최대 10명까지 이용자를 수용할 수 있다.

 

 

Multiplexing (다중화)

 

- 여러 개의 데이터 신호(저수준의 채널)들을 합쳐서 고속신호(고수준의 채널)로 만들어서 하나의 링크로 전송하는 방식이다.

 

- 하나의 링크를 다중화시켜 여러 사용자가 동시에 링크를 사용하게 되므로 링크의 효율성이 높아진다.

 

- 이 때 사용하는 장치를 다중화기(Multiplexer)라고 한다. 만약 다중화기를 사용하지 않으면 단말기(사용자)마다 모뎀(변복조기)이 필요하므로 비용이 많이 들게 되어 비효율적이게 된다.

 


주파수 분할 다중화(Frequency Division Multiplexing, FDM)

 

- 링크의 대역폭(Bandwidth)주파수를 기준으로 분할하여 여러 개의 작은 채널을 할당하는 방식으로 한 전송로를 여러 단말기(사용자)가 이용한다.

 

- 링크의 대역폭이 전송할 신호들의 대역폭보다 클 경우에만 사용가능한 아날로그 기술이다.

 

- 간단한 구조로 모뎀(변복조기)이 필요 없어 비용이 저렴하다.

 

- 송신측 과정 : 각 단말기(Sender)가 비슷한 주파수 영역의 신호를 만들면 다중화기 내부에서 각 주파수를 각각의 다른 반송주파수(Carrier Frequency)로 변조(Modulate)한다. 만들어진 반송주파수들이 모여서 하나의 복합신호(Composite Signal)가 되면 수용 가능한 대역폭을 가진 전송 매체(전송로)를 통해 신호가 전송된다.

 

<Multiplexer - 다중화기>


- 수신측 과정 : 위의 과정에서 만들어진 복합신호는 다중 복구기(Demultiplexer) 내부에서 필터(Filter)를 통해 각각의 반송주파수로 분리되고, 제각각 복조기(Demodulator)를 통해 반송주파수에서 해당 주파수 영역의 신호로 복조(Demodulate)되어 해당 신호만 수신측으로 보내진다.





 

시 분할 다중화(Time Division Multiplexing, TDM)

 

- 링크의 대역폭을 시간 슬롯(Time Slot)으로 나누어 각각 채널을 할당하는 방식으로 다수의 채널이 하나의 링크의 시간을 분할하여 사용하는 방식이다.

- 링크의 높은 대역폭을 여러 채널이 공유할 수 있게하는 디지털 기술이다.

- , 어떤 채널이 사용되지 않을 경우(데이터를 전송하지 않는 경우)에도 시간이 할당되어 있기 때문에 시간 슬롯이 낭비 될 때가 있다. 이를 위한 해결책으로 비동기식 시분할 다중화기법(ATDM)이 있다.

 

- 송신측 과정 : 다중화기(Multiplexer)와 다중 복구기(Demultiplexer)는 각각 스위치의 역할을 한다. 서로 동시에 시스템이 동작되도록 설정(동기화)되어 같은 속도지만 서로 반대방향으로 돈다. 다중화기의 경우 스위치가 채널 앞에서 열리게 되며 그 채널은 링크에 보낼 수 있는 신호를 열린 순간 전송하게 된다. 이 과정을 끼워 넣기(Interleaving)이라고 한다.

 

- 수신측 과정 : 다중 복구기의 경우 스위치가 채널 앞에서 열릴 때, 그 채널은 링크에서 전송된 신호를 수신측으로 전송하게 된다.




 


▶ Multiplexing Summary


- 두 기술 모두 하나의 링크를 나누어 사용하는 점에서 같지만, FDM은 주파수 대역별로

나누어 채널을 할당하는 것이고, TDM은 시간별로 나누어 채널을 할당한다는 점에서 차이가 있다.




Data : 비트(0, 1)로 구성된 정보

 

* Data Communication : 전송 매체(transmission medium)를 통해 두 기기간의 이루어지는 데이터 교환

 


1. 근본적인 특성

  • Delivery : 올바르게 목적지로 전달하는 것
  • Accuracy : 오류나 손실 없이 정확하게 데이터를 전달하는 것
  • Timeliness : 시간적으로 중요한 데이터를 전달하는 것, 데이터 생성 즉시 지연(delay)없이 데이터를 전달하는 것, 실시간 전송  ex) 멀티미디어(음성/영) 
  • Jitter : 패킷(데이터 단위) 전송 중의 변화 ex) 음성이나 영상 데이터 전송 중 끊김현상

 

2. 시스템 요소

  • Message : 전송되어지는 정보(데이터)
  • Sender(송신자) : 데이터 메시지를 보내는 기기
  • Receiver(수신자) : 데이터 메시지를 받는 기기
  • Transmission Medium(전송 매체) : 메시지가 이동하는 물리적 경로(통신 링크)
  • Protocol : 데이터 통신을 하기 위한 통신 규약(통신하는 기기간의 약속)

3. 데이터 흐름의 방향
  • Simplex : 단일방향의 통신  ex) 키보드, 모니터
  • Half-duplex : 반이중방식 통신으로 전송과 받기가 가능하나 두 기기가 동시에 주고 받을 수는 없다.  ex) 무전기
  • Full-duplex : 전이중방식 통신으로 전송과 받기가 동시에 가능하다.  ex) 전화


4. Network - 네트워크

  • 통신 링크에 의해 연결되어진 통신 관련 장비들의 무리
  • Device : host, end system, end host, connecting device such as router
  • host(호스트) : 네트워크에 연결된 컴퓨터

5. 네트워크의 기준

 - Performance(성능)
  • 전달시간, 응답시간 내에 측정되어진다.
  • 처리율(throughput), 지연(delay), 받은 데이터간의 시간 간격(jitter), 손실과 관련이 있다.
  • 유저의 수, 전송 매체의 종류, 하드웨어, 소프트웨어에 영향을 받는다.  ex) 사용자 수가 많을 수록 성능이 저하된다.

 - Reliability(신뢰성)
  • 실패의 빈도수, 실패 이후 네트워크의 복구시간, 재난에 대한 네트워크의 견고함

 - Security(보안)
  • 비인증된 접근으로부터 데이터의 보호
  • 데이터의 무결성
  • 보안 정책 및 절차의 구현

6. 물리적 구조

 - 연결 유형
  • Point-to-Point(점대점) : 두 기기간의 전용링크를 제공하는 구조
  • Multipoint(다중점) : 둘 이상의 기기들이 단일 링크를 공유하는 구조로 동시에 링크를 이용한다. 즉, 공동소유자 여러 명이 일정 기간 동안 돌아가면서 이용한다.

 - 물리적 형태(Topology)



  • Mesh
  1. 모든 기기가 점대점 구조로 연결되어 전용 링크를 사용한다.
  2. 두 기기간의 데이터 로드를 보장한다.
  3. 하나의 링크가 고장나도 전체 시스템은 중단하지 않는다.
  4. 보안성과 프라이버시가 보장된다.
  5. 결함 확인과 결함 분리가 쉽다.
  6. 케이블 수와 입출력 포트의 수가 (n(n-1))/2 만큼 요구된다.  ex) 5개의 사용자가 있다면 10개의 링크가 요구된다.



  • Star

  1. 전용링크가 중앙 컨트롤러(Hub)에 배치되며, 기기와 컨트롤러가 점대점 구조로 연결된다. - 중앙방식(Centralized)

  2. Mesh 보다 비용이 저렴하다.

  3. 하나의 링크와 하나의 입출력을 설치하고 변경하기가 쉽다. (단순한 구조이므로 링크 1개만 연결하면 된다.)

  4. 결함 확인과 결함 분리가 쉬우므로 튼튼하다.

  5. 다른 Topology보다 많은 Cabling

  6. 단 하나의 고장이 전체 시스템에 영향을 미친다. (중앙 장비-hub-가 고장난 경우)



  • Tree

Star 구조를 계층적으로 확장한 형태이다.



  • Bus
  1. 다중점 구조로 연결되며 하나의 긴 케이블이 모든 기기를 연결하는 척추 역할을 한다.
  2. 설치가 쉽다.
  3. 하나의 버스 구조가 지원할 수 있는 Tap(기기를 케이블에 연결하는 것)의 수와 길이가 제한된다.
  4. 재연결과 분리가 어렵다.
  5. 링크 공유의 문제로 각 기기가 동시에 데이터를 전송하면 신호가 충돌하는데 MAC(자료접근제어)에 의해 전송 순서가 결정된다.



  • Ring
  1. 각 기기는 점대점 구조로 연결되어 전용 링크를 사용한다.
  2. 설치와 변경이 쉽다.
  3. 기기와 링크간의 신호재생기(Repeater)가 존재한다.
  4. 결함 분리가 단순하다
  5. 단방향 연결, 모든 기기의 수와 최대 Ring의 길이가 제한된다.
  6. 하나가 고장나면 전체 네트워크를 이용할 수 없다. 그래서 해결책으로 이중링크를 사용한다. 
  7. 이중 링크(A Dual Ring) 구조는 데이터의 전송방향은 서로 반대인 링크를 가지는 구조로 두 개 모두 활성화되거나 하나는 백업용으로 사용되기도 한다. 


 7. 네트워크 유형


 - 규모에 따른 분류 (아래로 갈수록 범위가 커진다.)

  • Body Area Network(BAN) : 무선통신방식으로 이용된다.
  • Personal Area Network(PAN) : 블루투스
  • Local Area Network(LAN) : 근거리 통신망
  • Metropolitan Area Network(MAN)
  • Wide Area Network(WAN) : 광역 통신망
  • Internet : 각 네트워크를 연결한 가장 큰 네트워크


 - Local Area Network (LAN)

  • 수 킬로미터까지 제한된 크기를 가진다. (근거리 통신망)
  • PC나 단말기 사이에 네트워크 자원이 공유되어진다.
  • Star, Bus, Ring 구조가 해당된다.

 - Wide Area Network (WAN)
  • 대륙끼리 통신이 가능할 정도로 넓은 범위의 데이터 전송이 가능하다. (광역 통신망)
  • 대게 통신사에 의해 운영되고 통신사를 사용하는 조직에 의해 공유되어진다.
  • 점대점 구조의 WAN과 라우터를 가지고 Switched 구조의 WAN이 있다.
  • Internetwork (or Internet) : 내부적으로 연결된 네트워크들의 집합체이며, Switched 구조에서 최소 두 개의 링크를 하나의 스위치가 연결(LAN)하고 있고 해당 스위치는 라우터와 함께 점대점 구조로 연결(WAN)되어 있다.

 - Switching
  • 네트워크 통신에서는 호스트와 호스트사이에 데이터를 주고 받을 때, 패킷 교환 방식(Packet-Switching)과 회선 교환 방식(Circuit-Switching)이 있다.
  • Packet : 네트워크 계층(Network Layer)에서의 데이터의 형식화된(약속된) 단위
▶ Packet-Switching : 데이터를 패킷단위로 나누어 전달하는 방식


다음 링크로 전송되기 전에 큐에 패킷을 저장한 뒤 전송하는 방식인 Store and Forward을 이용한다.
패킷의 헤더에는 출발지(Source)와 목적지(Destination)의 정보가 있다. 이 정보를 통해 라우팅 알고리즘을 이용하여 경로를 설정하고 중간의 라우터(router)가 표지판역할을 하여 최종목적지까지 안내한다. 패킷의 헤더에는 라우터를 지날 때마다 목적지IP주소가 쌓이게되므로 오버헤드가 커지게 된다. 라우터마다 큐(Queue)가 존재하는데 여기서 다음 라우터로 이동되기 전에 패킷은 대기한다. 그러나 큐는 패킷을 수용할 수 있는 범위가 정해져 있기 때문에 패킷이 쌓이다 큐의 범위를 벗어날 경우 해당 패킷은 손실(Loss)된다.
주로 대용량 전송(Bursty Traffic)일 때 이용하며, 데이터가 한꺼번에 전송되므로 데이터가 활동하는 시간이 짧다고 표현한다. 이러한 패킷 교환 방식은 컴퓨터 통신에서 쓰이는 방식이다.

▶ Circuit-Switching : 하나의 전용 회선을 할당받아 데이터를 주고받는 방식

<보라색 선이 전용 회선이다. >

전용 회선이 할당되려면 통신을 위해  미리 연결(set up)되야한다. 셋업 절차는 수신측에서 송신측까지의 경로에 맞는 대역폭(Band width)을 미리 할당받는 것이다. 그렇게 연결된 회선은 독점되어 사용되므로 다른 데이터가 끼어들 수 없게 된다. 따라서 속도와 성능이 일정하다. 주로 실시간이 중요한 통신(전화)에 사용된다. 회선을 분할하는 방식에는 주파수 분할 다중화 방식(FDM)과 시 분할 다중화 방식(TDM)이 있다.

  •  차이점
* 패킷 교환 방식은 네트워크의 상황에 따라 패킷의 순서가 어긋날 수 있기 때문에 수신측에서 재조합할 필요가 있다. 그러나 회선 교환 방식은 정해진 경로를 따라 데이터가 전송되므로 순서가 어긋날 일이 없다.

* 패킷 교환 방식은 하나의 라우터가 고장나도 전송을 우회할 수 있기 때문에 에러에 강하다. 그러나 회선 교환 방식의 경우 둘 간의 사이에 오류가 생길 경우 데이터 전송이 실패하게 된다.

* 패킷 교환 방식은 라우터에 패킷을 저장해놓는 시간과 전파지연의 시간이 소비되어 전체 전송 시간이 지연된다. 그러나 회선 교환 방식은 미리 연결하는 시간을 제외하고 전파지연의 시간만 소비되므로 보다 빠른 전송속도를 가지게 된다.

* 회선 교환 방식은 패킷 교환 방식에 비해 같은 네트워크 용량에 비해 사용자가 제한된다.
ex) 1Mbps 짜리 링크에 각각의 사용자가 100kbps로 데이터를 전송한다면 패킷교환방식의 경우 10명이상의 유저가 동시에 링크를 사용할 확률이 낮기 때문에 더 많은 이용자도 수용가능할 것이다. 그러나 회선 교환 방식의 경우 각각의 사용자에게 전용회선이 할당되기때문에 어떤 사용자가 데이터를 보내지 않더라도 다른 사용자가 이용할 수 없게 된다. 따라서 딱 10명의 이용자만 수용할 수 있다.


[사진 출처 : http://www.mbaskool.com/business-concepts/it-and-systems/14504-packet-switching.html

http://www.webclasses.net/Courses/demos/MediaLight/Example1/The_OSI_Model/Content16184.htm ]


+ Recent posts