전송 서비스와 프로토콜(4계층)

 

- 다른 호스트들이 계속 네트워크에 머물도록 응용 프로세스 간의 논리적 통신을 제공한다.

 

- 전송 프로토콜(Transport Protocol)은 종단점(end-system)에서 적용된다.

  • 송신 호스트 : 데이터 메시지를 세그먼트로 분해하여 네트워크 계층(3계층)으로 전송한다.
  • 수신 호스트 : 세그먼트들을 데이터 메시지로 재조립하여 응용 계층으로 전송한다.

 

- TCPUDP가 대표적인 전송 프로토콜이며, 그 외에도 많이 이용된다.

 

- Throughput(스루풋, 처리율) : 네트워크 통신에서 노드 사이 또는 파이프 사이에서 전달되는 단위 시간당 전송되는 디지털 데이터 처리량. 주로 초당 비트수(bps)가 사용된다.

 

 


Transport VS Network Layer

 

- Network Layer(네트워크 계층, 3계층) : 호스트들 간의 논리적 통신을 돕는다.

 

- Transport Layer(전송 계층, 4계층) : 응용 프로세스 간의 논리적 통신을 돕는다.

 

- 네트워크 계층부터 하위 계층(1~3)들은 하드웨어적인 통신을 많이 다루고, 전송 계층부터 상위 계층(4~7)들은 소프트웨어적인 통신을 많이 다룬다.

 

 


인터넷 전송계층 프로토콜

 

- Transmission Control Protocol (전송 제어 프로토콜, 이하 TCP)

  • 신뢰성 있고, 순서가 보존되는 전송 시스템
  • Congestion Control(혼잡 제어), Flow Control(흐름 제어), Connection Setup(연결 설정) 등 각종 오류를 제어한다.
  • 웹 브라우저들이 월드 와이드 웹에서 서버에 연결할 때 사용되며, 이메일 전송 및 파일 전송에도 사용된다.

- User Datagram Protocol (사용자 데이터그램 프로토콜, 이하 UDP)

  • 신뢰성 없고, 순서가 보장되지 않는 전송 시스템
  • 꼭 필요한 기능(전송)만 하고, 오류 제어와 같은 추가 기능을 필요로 하지 않는 애플리케이션에 사용된다.
  • 추가 기능이 없기 때문에 오버헤드가 작고 지연 시간이 짧다는 장점이 있다.

- 이용되지 못하는 서비스 : 시간 및 대역폭이 보장되지 않으므로 스루풋도 보장되지 않는다.

여기서 보장되지 않는다.”는 것은 1초에 100개와 같이 딱 떨어지지 않음을 의미한다.

 

 


Multiplexing & Demultiplexing

 

- 네트워크 소켓 (Network Socket) : 컴퓨터 네트워크의 사이에 있는 프로세스 간 통신의 종착점이다. 컴퓨터 간 통신의 대부분은 IP(인터넷 프로토콜)을 기반으로 하고 있고, 네트워크 소켓의 대부분은 인터넷 소켓이다. 네트워크 통신을 위해서 송,수신측에서는 소켓을 생성하고, 이 소켓을 통해 서로 데이터를 교환한다.

 

- Multiplexing(다중화) at Sender : 다수의 소켓들로부터 추가 정보(목적지 주소 등)를 얻어서 전송할 데이터의 헤더에 해당 정보(목적지 주소 등)를 추가하는 기능.

 

- Demultiplexing(역다중화) at Receiver : 수신된 데이터를 적절한 소켓으로 전달하기 위해 헤더 정보를 이용한다. 하위 계층에서 상위 계층으로 올라갈 때마다 헤더가 작아지면서 전송할 데이터가 목적지에 도착한다.

 

 


▶ 역다중화 과정

 

- 호스트는 IP 데이터그램(datagram)을 수신한다.

  • 각각의 데이터그램 출발지 IP주소, 목적지 IP주소를 가지고 있다.
  • 각각의 데이터그램은 하나의 전송계층 세그먼트를 옮긴다.
  • 각각의 세그먼트는 출발지, 목적지 포트번호(16bits)를 가지고 있다.

- 호스트는 IP주소와 포트번호를 이용하여 세그먼트를 적절한 소켓으로 안내한다.

 

- IP Datagram


- TCP의 Segment

 

- IP 데이터그램이 세그먼트를 포함하고 있다.



- 데이터 전송 과정


- 비연결형 통신, UDP의 소켓

  • 생성된 소켓은 호스트 로컬 포트 번호(source port #)만 가지고 있다.
  • 호스트가 UDP 세그먼트를 받으면, 세그먼트에 있는 목적지 포트 번호를 확인한다.
  • 해당 포트 번호로 세그먼트를 안내한다.
  • 만약 서로 다른 출발지 IP주소, 포트 번호이지만 같은 목적지 포트번호나 IP주소를 가진 IP datagram을 받으면 목적지에서 같은 소켓으로 데이터가 전송된다.

- 연결 지향형 통신, TCP의 소켓

  • 출발지 IP주소, 포트번호와 목적지 IP주소, 포트번호의 네 가지 요소로 소켓이 생성되어진다.
  • 수신자는 세그먼트를 적절한 소켓으로 안내하기 위해 네 가지 값 모두 이용한다.
  • 송신 호스트는 동시에 많은 TCP 소켓들을 지원할 수 있다. 단 각각의 소켓들은 각자 네 가지 요소를 가진며, 이를 통해 소켓이 구분된다.
  • 웹 서버(송신자)는 각각의 클라이언트를 연결하기 위해 다른 소켓들을 가진다.

 

 

UDP(User Datagram Protocol)

 

- 추가 기능(오류제어)이 없고, 꼭 필요한 기능만 있는 인터넷 전송 프로토콜

 

- 세그먼트가 손실될 수 있고, 순서가 뒤바뀔 수 있다.

 

- 송수신 간의 연결 설정(Handshaking)을 하지 않는다.

 

- 각각의 UDP 세그먼트는 독립적으로 다루어진다.

 

- 연결 설정이 필요 없는 짧은 메시지를 주고받을 때 사용된다.

 

- 실시간이 중요한 스트리밍 멀티미디어와 같은 응용프로그램, 도메인 네임 서버(DNS) SNMP에 이용되어진다

 

- 애플리케이션 맞춤형 오류 회복이 추가되면서 UDP를 통한 신뢰성 있는 데이터 전송이 가능해졌다.


 - UDP 세그먼트

  • 세그먼트의 길이를 두는 이유는 가변적 길이므로 끝이 어딘지 찾기 위해 필요로 한다.
  • 송수신간의 연결 설정을 나타내는 연결 상태가 없으므로 단순한 구조이다.
  • 8바이트라는 작은 헤더 크기를 가진다.
  • UDP는 원하는 만큼 빠르게 전송할 수 있어서 혼잡 제어(Congestion Control)이 발생하지 않는다.

- Checksum(검사합) : 중복 검사의 한 형태로 오류 검출을 위한 기능을 한다.

  • 송신자는 헤더 필드가 16비트의 정수를 나열한 것으로 간주하고, 세그먼트들의 합의 1의 보수를 취한 결과(체크섬 값)UDP 체크섬 필드에 저장한다.
  • 수신자는 받은 세그먼트 값들의 합과 체크섬 값(결과)을 더한다. 만약 계산된 체크섬이 체크섬필드의 값과 같다면 더했을 때 비트값이 전부 1인 패턴이 나와야한다. 0이 하나라도 있으면 에러가 발생한 것이다.
  • 아래는 체크섬의 예시이다.

 

다음과 같이 4 바이트의 데이터가 있다고 치자: 0x25, 0x62, 0x3F, 0x52

1 단계: 모든 바이트를 덧셈하면 0x118이 된다.

2 단계: 1바이트의 절반(4비트, 이하 니블)을 버림으로써 0x18을 만든다.

3 단계: 0x181의 보수를 얻음으로써 0xE8을 얻는다. 이것이 체크섬 바이트이다.

체크섬 바이트를 테스트하려면 원래 그룹의 바이트에 체크섬 바이트까지 모두 더하면 0x200이 된다.

다시 니블을 버림으로써 0x00이 된다. 0x00이라는 뜻은 오류가 없다는 뜻이다. (하지만 오류가 있어도 우연히 0x00이 될 수도 있다.)

 

+ Recent posts